
Linux 2.6 Virtual MemoryLinux 2.6 Virtual Memory
Linux Kernel Hacking Free Course, Linux Kernel Hacking Free Course,

third edition 2006third edition 2006

Andrea ArcangeliAndrea Arcangeli
andrea(at)cpushare.comandrea(at)cpushare.com

20060412 - Rome20060412 - Rome

Topic last timeTopic last time
 Last time I covered the 2.5 VM and the
original rmap based on pte_chains

 There were problems in the performance
of the pte_chains

 Infact no attractive solution to avoid the
pte_chains overhead was found until mid
2004

 Today the VM is overall quite optimal
 There are no huge margins for
optimizations for the basic workloads on
regular hardware

Cache replacement is the sameCache replacement is the same
 Interestingly many things have changed
during 2.5 and 2.6 (especially the
implementation is almost completely
rewritten), but the active/inactive list
design for cache replacement introduced
in 2.4.10 is still the same today in 2.6.16

objrmap+anon-vma designobjrmap+anon-vma design
 One significant VM change happened
around 2.6.7 has been the introduction of
objrmap and anon-vma to replace the
pte_chains

 We'll see in the next slides why the
pte_chains were useful and how the new
objrmap+anon_vma model works

VM basicsVM basics
 You know userspace memory is virtual
 Pagetables are set by the kernel and
they tell the cpu how to translate from
virtual addresses to physical addresses

 Before a page of RAM can be swapped
out to disk, we must find all the
pagetables (i.e. virt addresses) that map
to the page and mark them non-present

 Each virtual address maps to only one
phys addr but different virtual addresses
can point to the same phys addr (SHM)

VM basics (greatly simplified)VM basics (greatly simplified)

Virtual pages
They cost “nothing”

Physical pages
They cost money!
This is the RAM

arrows = pagetables
virtual to physical mapping

VM basics (greatly simplified)VM basics (greatly simplified)
 Finding all pagetables (i.e. virtual
addresses) that map to a certain physical
page is not easy (but needed to swap)

 2.4 in short scanned all pagetables O(N)
 2.6 has an API called “rmap” that given a
certain physical address allows the
common code to reach all ptes that
maps to it

 This rmap API is used by the paging
methods to swap and/or unmap pages
more efficiently than 2.4 did

VM basics (greatly simplified)VM basics (greatly simplified)

To swap to disk the last
physical page we must
first drop the two arrows
(mark pte non-present)

VM basics (greatly simplified)VM basics (greatly simplified)

The last page is not
mapped anymore
so we can swap it
to disk now

Two pagetables
have been set as
non-present

rmap/objrmap VMrmap/objrmap VM

Rmap API adds the arrow
from phys to virtual
too, so we can find the
ptes faster than O(N)

the big arrow is rmap
it allows us to drop the
mapping fast by finding
all virtual addresses
(through the vmas)

rmap pros and consrmap pros and cons
 rmap API clearly provides a benefit to
the VM paging code by avoding to
potentially scan all ptes to swap or drop
a single page

 but keeping track of the back-arrow is
expensive, and it has to happen in the
cpu-bound fast paths

 swap is not a fast path and it's I/O bound
 the first 2.6 rmap design was
exceptionally inefficient and it wasted
lots of ram and CPU

rmap before 2.6.7rmap before 2.6.7
 Before 2.6.7, rmap pte-chains invalidated
pte-highmem/highpte (rmap overhead is
equal to the pte overhead, but
pagetables go in highmem, rmap cannot)

 pte-highmem/highmem allowed to run
some database workload on >4G boxes
and the pte-chains broke that

 With old rmap code (with PAE) 8 bytes
of lowmemory were wasted for each
mapped page (on a x86 there are only
~900M of lowmemory)

rmap before 2.6.7rmap before 2.6.7
 So with the old rmap design a workload
with 1000 processes mapping 2G of
shared memory each, would waste
1000*2*1024*1024*1024/4096*8/1024/1024/1024
= 3.9Gbytes of lowmemory (and there
are only ~900M of lowmemory available
on a x86...)

 The performance of the page faults and
of all other syscalls mangling the
pagetables were also hurt by the pte-
chains based rmap design

rmap since 2.6.7rmap since 2.6.7
 The solution was to replace the old rmap
code based on the pte-chains with
objrmap+anon_vma+prio_tree: that
solved both the memory waste with SHM
and the slowdown of the fast paths (like
page faults and fork), but without
sacrificing the paging scalability

 The first kernel out there brave enough
to use objrmap+anon_vma has been the
2.6.5 SLES9 kernel and shortly later the
new design has been merged in 2.6.7

objrmap historyobjrmap history
 objrmap has been researched by various
developers (David Miller, Dave
McCracken, Hugh Dickins), but it could
never work well due the anonymous
memory that still required rmap
pte_chains or inefficient pagetable
walking

 anon-vma solved the problem by
creating a sort of filebacked address-
space for the anonymous memory called
“struct anon_vma”

objrmap historyobjrmap history
 A single anon_vma object (8-bytes on
UP 32bit) can reverse (back arrow) an
unlimited amount of address space,
while the old rmap pte_chains required a
single object entry (8 bytes) for every
single anonymous page being mapped

 anon_vma requires special locking and
dynamic allocations only at the first page
fault of a new vma (not at every page
fault or pte modification like the old rmap
code did)

objrmap/anon-vma visualobjrmap/anon-vma visual
PHSYCAL PAGE anon_vma

PHSYCAL PAGE

PHSYCAL PAGE

PHSYCAL PAGE

inode
(objrmap)

vma

vma

vma vma

prio_tree

Reaching the relevant pagetables is
a formality after we know all the “vmas”

Great collaboration on l-kGreat collaboration on l-k
 Dave@IBM wrote objrmap
 I wrote anon-vma
 Rajesh@umich.edu wrote prio-tree
 Hugh@Veritas researched anonmm,
audited the code and split and sorted it
to make it easier for Andrew to merge it
into mainline

 Andrew and Linus helped by checking
and merging it

 Page to pagetable lookup problem is
solved quite optimally now

VM tuningVM tuning
 Luckily not an huge amount of tuning
needed

 Most notable parameter is swappiness:
 /proc/sys/vm/swappiness
 default swappiness is 60
 100 max
 0 min
 Higher means swap more
 Lower means swap lessh

VM tuningVM tuning
 Really be careful with lower
swappiness value (I got reports of
deadlocks with low swappiness
values, that's a VM bug and should
be fixed...)

 dirty_ratio
 max percentage of memory dirty in
the system (this doesn't account
MAP_SHARED)

 min_free_kbytes
 control the GFP_ATOMIC levels

VM tuningVM tuning
 /proc/sys/vm/block_dump

 debug why disk spin-up
 /proc/sys/vm/dirty_expire_centisecs

 how long cache should be dirty
 dirty_writeback_centisecs

 how frequently we check the
dirty_expire_centisecs levels

 dirty_ratio
 max percentage of memory dirty in
the system (this doesn't account
MAP_SHARED)

VM tuningVM tuning
 min_free_kbytes

 control the GFP_ATOMIC levels
 overcommit_memory

 0 default: non strict check, multiple
mmaps will succeed even if the sum
of the address space allocated
largely exceedes swap + free +
cache + buffers

 1: mmap always succeeds,
overcommit fully enabled

 2: strict overcommit enabled

VM tuningVM tuning
 /proc/sys/vm/overcommit_ratio

 for mode 1: max percentage of
memory committed

 See /proc/meminfo:
 grep Committed /proc/meminfo
 Committed_AS: 243252 kB
 This is the total amount of memory
needed by userland to run including
all mmaps and user stack

 Still no guarantee of graceful
-ENOMEM due to stack growsdown

/proc/<pid>/seccomp/proc/<pid>/seccomp
 Secure computing mode allows running

untrusted code as normal user
 syscalls allowed:
 read
 write
 exit
 sigreturn

 Supported archs by 2.6.12 and later:
 x86_64
 x86
 ppc64

/proc/<pid>/seccomp applications/proc/<pid>/seccomp applications
 Truly secure and fast grid computing
 No need of slow and memory hungry

interpreters (or just in time compilers) to
keep the cluster secure (i.e. no JVM
waste), and no need of virtualization

 Safer and faster because much simpler
and enforced by the kernel

 simd/sse2/ss3/altivec is allowed
 Secure decompression (bzip2, gzip,

ogg, mp3, mpeg, mov etc..)
 jpeg decompression in web browsers

/proc/<pid>/seccomp API/proc/<pid>/seccomp API
 If “echo 1 >/proc/self/seccomp”

returns no errors, it means it worked
and you can depend on it

 Shall there be a security issue in mode =
1, the above write will fail and it will
return an error, and the userland code
should fallback to the normal
decompression scheme for backwards
compatibility on older kernels

 A userland lib could hide the kernel
details and provide a friendly API

/proc/<pid>/seccomp API/proc/<pid>/seccomp API
 Given a proper intialization from a

seccomp-loader, any untrusted or
malicious bytecode can be later safely
run inside the seccomp jail

 TSC is automatically disabled to prevent
theoretical covert channels

 There is very little code involved with
seccomp, so it's most secure approach

 All virtualization solutions that attempt to
achieve similar objectives are order of
magnitude more complicated

/proc/<pid>/seccomp API/proc/<pid>/seccomp API
 seccomp programming model is not

friendly, malloc must be simulated etc...
 Good only for computing
 It could be adapted to the CELL SPU

model which also has very limited
capabilities

 I believe if people can write code for the
CELL SPU they can as easily write code
inside SECCOMP

 In the long term seccomp can run on top
of virtualization (seccomp-hypervisor)

