Linux Kernel Hacking Free Course
3" edition

G.Grilli, University of Rome “Tor Vergata”

Compiling and installing
the kernel

January 25, 2006 Compiling and installing the kernel

Linux Kernel Hacking Free Course - 3" edition

Contents:
Q Why recompiling the kernel
ﬁ Obtaining a new kernel

Q Configuring and compiling a new kernel
Kconfig sintax

Q Installation process
LILO boot loader
GRUB boot loader

Q How to apply a kernel patch
f} Tips & Tricks to speed up the compilation process

Speed up the compilation time with DISTCC

January 25, 2006 Compiling and installing the kernel 2

Linux Kernel Hacking Free Course - 3" edition

Why to recompile the kernel?

m=) {0 take advantage of new features avaliable in the last kernel release

mm) to take advantage of hardware not included in the stock kernel that came with
the distribution you installed

=) to close potential holes from modules or features that you do not ever use

mm) to tailor the kernel specifically of your computer hardware, resulting in a
performance boost

January 25, 2006 Compiling and installing the kernel

Linux Kernel Hacking Free Course - 3" edition

Obtaining a new kernel:

.
@ very easy to install
o RPM (Red Hat),
Binares < @ distribution dependent == v.ST (Suse),
@ not 100% customizable LISA (Caldera), . ..
\
f
@ completely customizable
Sources < @ distribution independent m=) www.kernel.org

@ some tricks required

\

January 25, 2006 Compiling and installing the kernel

Linux Kernel Hacking Free Course - 3" edition

How to make a new kernel version

!

1 1 1 11

move to the kernel sources directory:
cd /usr/src

copy the whole kernel directory:
cp -r linux-2.6.15 |inux-2.6.15kh3

remove previous symbolic link: (optional)
rm-f |inux

make a new symbolic link: (optional)
ln -s |1 nux-2.6.15kh3 |1 nux

move to the new kernel's root:
cd |inux (optional)

edit the Makefile:
"EXTRAVERSI ON = kh3"

January 25, 2006 Compiling and installing the kernel

Linux Kernel Hacking Free Course - 3" edition

Understanding the kernel version numbering system
(stable kernel version)

2.6.15.2

% \ Patch Level

Major number (version) (extraversion)
represent very significant changes bug fixes and updates

Minor number (sublevel)
new features

January 25, 2006 Compiling and installing the kernel 6

Linux Kernel Hacking Free Course - 3" edition

Understanding the kernel version numbering system
(developing kernel version)

2.6.15-Irqd

% \ Paich Level

Major number (version) (extraversion)
represent very significant changes bug fixes and updates

Minor number (sublevel)
bug fixes, updates, new features

January 25, 2006 Compiling and installing the kernel 7

Linux Kernel Hacking Free Course - 3" edition

Configure the kernel to be compiled (1)

Configuring a kernel means selecting the kernel functions and the kernel device drivers
according to your hardware configuration and according to your needs. It can be
accomplished in three ways:

make config
(terminal)

make nenuconfi g
(pseudo-graphical)

make ol dconfig

(terminal, useful when you
apply patches)

make xconfig
(graphical)

January 25, 2006

\

—

J

each configuration option can be answered in three possible
ways by typing the character 'Y', 'M' or 'N":

'Y': feature will be compiled into the kernel image
'M': feature will be compiled but as a module

_ ‘N': feature will not be compiled

Compiling and installing the kernel

=~

Linux Kernel Hacking Free Course - 3" edition

Configure the kernel to be compiled (2)

In order to manage all the dependencies related to the kernel configuration, a special
configuration file is used.

kernel2.2-2.4 > three different configuration files, one for each utility

kernel26 > the utilities access a centralized configurations file called
Kconf i g using the same library, | i bkconfi g.
The sintax used in Kconfi g can be found in the kernel
sources (Docunent at i on/ kbui | d/).

N.B..
The main Kconf i g file is architecture dependent. For example, if you are compiling a new
kernel for Intel IA32, itis ar ch/ 1 386/ Kconf i g.

January 25, 2006 Compiling and installing the kernel

Linux Kernel Hacking Free Course - 3" edition

Kernel modules

‘ Modules are pieces of code that can be loaded and unloaded into the kernel upon demand

‘ They extend the functionality of the kernel without the need to reboot the system

‘ Without modules, we would have to build monolithic kernels and add new functionality
directly into the kernel image

‘ Without modules we are supposed to rebuild and reboot the kernel every time we want
new functionalities

January 25, 2006 Compiling and installing the kernel 10

Linux Kernel Hacking Free Course - 3" edition

Configure the kernel to be compiled (3)

Example of Kconfig sintax:

mai nmenu " Li nux Kernel Configuration”

config X86_32

[

bool

default vy

hel p
This is Linux's home port. Linux was originally native to the Intel
386, and runs on all the |ater x86 processors including the Intel
486, 586, Pentiunms, and various instruction-set-conpatible chips by
AMD, Cyrix, and others.

-]

menu " Processor type and features”

config NR_CPUS

I nt " Maxi mum nunber of CPUs (2-255)"

range 2 255

depends on SMP

default "32" if X86_NUMAQ || X86_SUMMT || X86_BIGSMP || X86_ES7000
default "8"

hel p
This allows you to specify the maxi rum nunber of CPUs which this

kernel will support. The maxi mum supported value is 255 and the
m ni nrum val ue whi ch nmakes sense is 2.

January 25, 2006 Compiling and installing the kernel

11

Linux Kernel Hacking Free Course - 3" edition

Compiling the kernel

Kernel compiling can be performed by 4 main steps but it depends also on the kernel
version we are working with:

Kernel 2.2 - 2.4 Kernel 2.6
step 1 building dependencies (ake dep \\ / \
step 2 puildin”g the “big compressed make bzl mge . ke
image” of the kernel
step 3 building modules make nodul es)
step4 installing modules make nodul es_instal | make nodul es_install

N /

January 25, 2006 Compiling and installing the kernel 12

Linux Kernel Hacking Free Course - 3" edition

Output of compilation process

January 25, 2006

r oot % make

~885887858887

BUI LD

i ncl ude/ l'i nux/ version. h

i ncl ude/ i nux/ version. h

i ncl ude/ asm -> i ncl ude/ asni 386
scripts/split-include

scri pt s/ connakehash

arch/i 386/ ker nel / process. o
arch/i 386/ ker nel / semaphore. o
arch/i 386/ kernel / signal .o
arch/i 386/ kernel /entry. o
arch/i 386/ kernel /traps.o

fs/partitions/check.o
fs/partitions/nsdos. o
fs/partitions/built-in.o
fs/proc/task_mru. o
fs/proc/inode.o

arch/ i 386/ boot / conpressed/ v i nux
arch/i 386/ boot/vni i nux. bin

arch/i 386/ boot/tool s/build

arch/i 386/ boot / bzl rage

Root device is (3, 1)
Boot sector 512 bytes.
Setup is 4736 bytes.
Systemis 1297 kB

Ker nel :

arch/i 386/ boot/ bzl mage i s ready

Compiling and installing the kernel

13

Linux Kernel Hacking Free Course - 3" edition

Initial Ramdisk image (initrd) (1)

1) the boot loader loads the kernel and the initial RAM disk

2) the kernel converts initrd into a "normal” RAM disk and frees the memory used by initrd

3) initrd is mounted read-write as root

4) /linuxrc is executed (this can be any valid executable, including shell scripts; it is
run with uid 0 and can do basically everything init can do)

5) linuxrc mounts the "real” root file system
6) linuxrc places the root file system at the root directory using the pivot root () system call

7) the usual boot sequence (e.g. invocation of /sbin/init) is performed on the root file system

8) the initrd file system is removed

January 25, 2006 Compiling and installing the kernel 14

Linux Kernel Hacking Free Course - 3" edition

Initial Ramdisk image (initrd) (2)

How to create an initrd in Suse Linux:

cd /boot
mkinitrd -k vmlinuz-<kernel> -i initrd-<kernel>

How to create an initrd in Red Hat Linux:

cd /boot
mkinitrd -v initrd-<kernel>.img <kernel>

mkinitrd creates an initial image used by the kernel for preloading the block device
modules (such as IDE, SCSI or RAID) which are needed to access the root filesystem.
Mkinitrd automatically loads filesystem modules (such as ext3 and jbd), IDE modules, all
scsi_hostadapter entries in /etc/modprobe.conf, and raid modules if the system's root

partition is on raid, which makes it simple to build and use kernels using modular device
drivers.

January 25, 2006 Compiling and installing the kernel

15

Linux Kernel Hacking Free Course - 3" edition

Installing the kernel image on the system (1)

Once the compilation process is over, we should have our modules in the
/11 b/ modul es/ i nux-2. 6. X- xxx folder, the kernel image image v i nux
in /usr/src/linux and the big compressed Iimage bzlmage in
[usr/src/linux/arch/i 386/ boot/ bzl mage.

Now we must install the compressed kernel image on our system:

—

(It is not the safer choice, but very common)

hard disk's mbr

January 25, 2006 Compiling and installing the kernel 16

Linux Kernel Hacking Free Course - 3" edition

Installing the kernel image on the system (2) i Hard disk's MBR

The need of a boot loader

A boot loader loads the operating system. When your machine loads its operating system,
the BIOS reads the first 512 bytes of your bootable media (which is known as the master
boot record, or MBR). You can store the boot record of only one operating system in a
single MBR, so a problem becomes apparent when you require multiple operating
systems. Hence the need for more flexible boot loaders.

The master boot record itself holds two things -- either some of or all of the boot loader
program and the partition table (which holds information regarding how the rest of the
media is split up into partitions). When the BIOS loads, it looks for data stored in the first
sector of the hard drive, the MBR; using the data stored in the MBR, the BIOS activates
the boot loader.

Linux most popular boot loaders: LILO and GRUB.

January 25, 2006 Compiling and installing the kernel

17

Linux Kernel Hacking Free Course - 3" edition

Installing the kernel image on the system (3)

LILO

LInux LOader, or LILO, comes as standard on all distributions of Linux. As one of the
older/oldest Linux boot loaders, its continued strong Linux community support has
enabled it to evolve over time and stay viable as a usable modern-day boot loader. Some
new functionality includes an enhanced user interface and exploitation of new BIOS
functions that eliminate the old 1024-cylinder limit.

LILO configuration is all done through a configuration file located in /etc/lilo.conf. The next
slide will show an example configuration for dual booting a Linux and Windows machine.

January 25, 2006 Compiling and installing the kernel

18

Linux Kernel Hacking Free Course - 3" edition

Installing the kernel image on the system (4)

Example | i | 0. conf file:

boot =/ dev/ hda

map=/ boot / map

I nstal | =/ boot/ boot. b

pr onpt

t1 meout =100

conpact

def aul t =Li nux

| mage=/ boot/vm i nuz-2.4.18-14
| abel =Li nux
r oot =/ dev/ hdb3
read-only
passwor d=I i nux

ot her =/ dev/ hda
| abel =W ndows XP

\

/

January 25, 2006

boot = tells LILO where to install the boot loader

map: points to the map file used by LILO internally during
bootup

i nst al | :is one of the files used internally by LILO during
the boot process

pr onpt : tells LILO to use the user interface

t i meout :is the number of tenths of a second that the
boot prompt will wait before automatically loading the default
OS, in this case Linux

conpact : makes the boot process quicker by merging
adjacent disk read requests into a single request

def aul t : tells LILO which image to boot from by default

| abel : identifies the different OS you want to boot from at
the user interface at runtime (avoid spaces!)

Compiling and installing the kernel 19

Linux Kernel Hacking Free Course - 3" edition

Installing the kernel image on the system (4 - cont.)

Example | i | 0. conf file:

boot =/ dev/ hda
map=/ boot / map

| nstal | =/ boot/ boot. b
pr onpt

t 1 meout =100

conpact

def aul t =Li nux

| abel =Li nux
r oot =/ dev/ hdb3
read-only
passwor d=l i nux
ot her =/ dev/ hda
\\\ | abel =W ndows XP

\ r oot = tells LILO where the OS file system actually lives

r ead- onl y: tells LILO to perform the initial boot to the
file system read only. Once the OS is fully booted, it is
mounted read-write

pr onpt : tells LILO to use the user interface

i mage=/ boot/vm i nuz-2.4.18-14 passwor d: is the number of tenths of a second that the

boot prompt will wait before automatically loading the default
0S, in this case Linux

ot her : acts like a combination of the image and root
options, but for operating systems other than Linux

/

January 25, 2006

Compiling and installing the kernel

20

Linux Kernel Hacking Free Course - 3“ edition

Installing the kernel image on the system (5)

Since lilo.conf is not read at boot time, the MBR needs to be "refreshed" when this is
changed. If you do not do this upon rebooting, none of your changes to lilo.conf will be
reflected at startup. Like getting LILO into the MBR in the first place, you need to run:

/sbin/lilo -v -v (very high verbosity level)

LILO boot error codes

L —» the first stage boot loader has been loaded and started, but it can't load the second stage boot loader
LI —® the first stage boot loader was able to load the second stage boot loader, but has failed to execute it

LIL — ™ the second stage boot loader has been started, but it can't load the descriptor table from the map file.

LIL? —® the second stage boot loader has been loaded at an incorrect address
LIL- — ® the descriptor table is corrupt

LILO — ® allparts of LILO have been successfully loaded

January 25, 2006 Compiling and installing the kernel 21

Linux Kernel Hacking Free Course - 3" edition

Installing the kernel image on the system (6)
GRUB (GRand Unified Bootloader)

=) GRUB provides a true command-based, pre-OS environment on x86 machines to
allow maximum flexibility in loading operating systems with certain options or
gathering information about the system.

==) GRUB supports Logical Block Addressing (LBA) mode.

m=) GRUB's configuration file is read from the disk every time the system boots,
preventing the user from having to write over the MBR every time a change the
boot options is made.

January 25, 2006 Compiling and installing the kernel

22

Linux Kernel Hacking Free Course - 3" edition

Installing the kernel image on the system (7)

Example / boot / gr ub/ gr ub. conf file:

/

def aul t =0
t 1 neout =10

\

spl ashi mage=(hdO, 1)/ grub/sc. xpm gz

title Gentoo Linux (2.4.7-10)
root (hdO, 1)
kernel /vminuz-2.4.7-10 ro
r oot =/ dev/ hda3
initrd /initrd-2.4.7-10.iny

title Wndows 2000
root noverify (hd0O, 0)
chai nl oader +1

o

/

January 25, 2006

def aul t = tells grub which image to boot from by default
(grub starts counting from 0)

t i meout : is the number of a second that the boot prompt
will wait before automatically loading the default OS, in this
case Linux

spl ashi mage: graphical initial boot screen

ti tl e:identifies the different OS you want to boot from at
the user interface at runtime

root (hdO, 1) :the Linux partition is on /dev/hda2

I ni trd:tells grub where to find the initial ramdisk

r oot nover i f y: similar to root, but don't attempt to
mount the partition. This is useful for when an OS is outside
of the area of the disk that GRUB can read

chai nl oader : this line is necessary for Grub to go into
win2k's loader. Be careful with the spacing!

Compiling and installing the kernel

23

Linux Kernel Hacking Free Course - 3" edition

Applying a kernel patch

If you wish to upgrade to a newer kernel, you can patch your current kernel instead of downloading an
entire new kernel. By patching your existing kernel, you retain your settings from previous kernel
compilations. Patching the kernel is a good choice if you wish to upgrade from your current patch level to
the next consecutive patch level. For example, patching kernel 2.6.3 to 2.2.4 involves applying one patch.
However, if you wish to upgrade the 2.6.0 kernel to 2.6.15, then a patch for each patch level must be
applied sequentially. In this case, it may be better to download the entire 2.2.14 kernel.

mm) move the downloaded kernel patch to the /usr/src/linux directory:
cd /usr/src/linux

If you downloaded a patch with a .gz extension, execute the following command:
gunzi p patch-2.6. x.9z

If you downloaded a patch with a .bz2 extension, execute the following command:
bunzi p2 patch-2. 6. x. bz2

1 11

apply the patch to the kernel source tree with the following command:
patch -pl < patch-2.6.x

January 25, 2006 Compiling and installing the kernel

24

Linux Kernel Hacking Free Course - 3" edition

Tips and tricks to speedup the compilation process (1)

==) Avoid runningmake clean as much as possible since make clean destroys
all the object files, thus forcing a recompilation of the whole kernel.

=) |f you are modifying only few source files in the kernel and you want to make a patch,
try to use hard links instead of copying the whole kernel tree in order to speed up the
process:

cp -al linux-2.6.15 |inux-2.6.15kh3

But remember to break the hard link before modifying the file in this way:
cd /usr/src/linux-2.6.15kh3

cp kernel/fork.c kernel/1l

my kernel/1l kernel/fork.c

cd ..

diff -ruN linux-2.6.15 |linux-2.6.15kh3 > nypatch

January 25, 2006 Compiling and installing the kernel 25

Linux Kernel Hacking Free Course - 3" edition

Tips and tricks to speedup the compilation process (2)

==) |f you have a multiprocessor box, you can compile the kernel using the =5 (or —-
jobs) make option as follows:

make -j N phase 1

modules install phase 2
where N is the number of jobs running concurrently; usually N is set so that:
N = #processors + 1

a) If the -3 option is given without an argument, make will not limit the number of jobs that can run
simultaneously. Usually, performances can decrease!

b) Benefits from using -j option in phase 2 are almost irrelevant.

January 25, 2006 Compiling and installing the kernel 26

Linux Kernel Hacking Free Course - 3" edition

Speed up the compilation time with DISTCC (1)

DISTCC is a program to distribute builds of C, C++, Objective C or Objective C++ code across
several machines on a network. You can start your distributed compilation process in almost
30 seconds.

1) for each machine, download distcc, unpack, and do:

./configure && make && sudo make install

2) on each of the servers, run distccd --daemon, with ——allow options to restrict
access

3) put the names of the servers in your environment:
export DISTCC HOSTS='localhost red green blue’

4) build your code:
cd ~/usr/src/linux-2.6.15; make -j8 CC=distcc

January 25, 2006 Compiling and installing the kernel 27

Linux Kernel Hacking Free Course - 3“ edition

Speed up the compilation time with DISTCC (2)

DISTCC is nearly linearly scalable for small numbers of machines: building Linux 2.4.19 on a
single 1700MHz Pentium IV machine with distcc 0.15 takes 6 minutes, 45 seconds. Using
distcc across three such machines on a 100Mbps switch takes only 2 minutes, 30 seconds:
2.6x faster. The (unreachable) theoretical maximum speedup is 3.0x, so in this case distcc
scales with 89% efficiency.

DISTCC monitor screenshot

o B

|Hust |S|ut |Fi|e State |Tas|-cs

localhost 1 fark.c Compile

nevada O ialloc.c Compile -

nevada 1 crc3z.c Compile -I

nevada 2 vMEs.c Compile .

nevada 3 datagram.c Preprocess I
proforma 0 loop.c Compile I-.
proforma 1 slab.c Receive --I
proforma 2 pageattr.c Preprocess - Il I-

Load average: 3.31, 1.96, 1,83

January 25, 2006 Compiling and installing the kernel

