Linux Kernel Hacking Free Course
3" edition

G.Grilli, University of Rome “Tor Vergata”

Profiling and Debugging

February 08, 2006 Profiling and debugging

Linux Kernel Hacking Free Course - 3" edition

Contents:

f} Kernel profiling
Introduction to Oprofile

Oprofile features
Getting started with Oprofile

Q Kernel debugging
Debugging by printing: printk loglevels and logging process

When the system seems to hang: the magic SysRQ key
Understanding an Oops output by example

@ Useful debugging tools: netconsole and netcat

February 08, 2006 Profiling and debugging

Linux Kernel Hacking Free Course - 3" edition

What is profiling?

m=) Profiling is a formal summary or analysis of data, often in the form of a graph
or table, representing distinctive performance features or characteristics

m=) Analyzing the performance of the Linux operating system and application
code can be difficult due to unexpected interactions between the hardware
and the software, but profiling is one way you can identify such performance
problems

m=) The goal of the profilers is ..provides the percentage and number of samples
collected for specified processor events such as the number of cache line
misses, Transition Lookaside Buffer (TLB) misses, and so on

February 08, 2006 Profiling and debugging

Linux Kernel Hacking Free Course - 3" edition

Oprofile

—)

-

OProfile is one of several profiling and performance monitoring tools for Linux

It consists of a loadable kernel module and a system daemon process that
collects sample data from a running system (in 2.6 kernels it can be compiled
as built-in feature)

|t takes advantage of the hardware performance counters available in today's
microprocessors to enable profiling of the entire system

OProfile is capable of profiling all code including the kernel, kernel modules,
kernel interrupt handlers, system shared libraries, and the applications
(symbols are retrieved into the System.map of the profiling kernel)

February 08, 2006 Profiling and debugging

Linux Kernel Hacking Free Course - 3" edition

Oprofile - features (1)

unobtrusive no special recompilations, wrapper libraries or the like are necessary
no kernel patch is needed (or built-in or simply a module)

system-wide profiling all code running on the system is profiled, enabling analysis of system
performance

performance counter enables collection of various low-level data, and association with particular
support sections of code

call-graph support with an x86 2.6 kernel, OProfile can provide gprof-style call-graph profiling data

February 08, 2006 Profiling and debugging 5

Linux Kernel Hacking Free Course - 3" edition

Oprofile - features (2)

low overhead

post-profile analysis

system support

February 08, 2006

OProfile has a typical overhead of 1-8%, dependent on sampling frequency and
workload

profile data can be produced on the function-level or instruction-level detail. Source
trees annotated with profile information can be created. A hit list of applications
and functions that take the most time across the whole system can be produced.

OProfile works across a range of CPUs, include the Intel range, AMD's Athlon and
AMDG4 processors range, the Alpha, and more. OProfile will work against almost
any 2.2, 2.4 and 2.6 kernels, and works on both UP and SMP systems from
desktops to the scariest NUMAQ boxes.

Profiling and debugging

Linux Kernel Hacking Free Course - 3" edition

Oprofile — getting started (1)

if we want to profile the linux kernel, we must configure Oprofile this way:

opcontrol --vmlinux=/boot/vmlinux-"uname -r°

instead, if you want to profile the application without the kernel:

opcontrol --no-vmlinux

now we start the Oprofile daemon to start collecting profile data:

opcontrol --start

February 08, 2006 Profiling and debugging

Linux Kernel Hacking Free Course - 3" edition

Oprofile — getting started (2)

before examining the results we must dump the collected data:

opcontrol --dump

in this way we are ready to examine results collected before raising the dump command. Do
not forget Oprofile is still capturing data!

In order to completely end the sampling process, use this command:

opcontrol --shutdown

if for some reason you want to clear the profile data, at any time you can just do a reset
with:

opcontrol --reset

February 08, 2006 Profiling and debugging

Linux Kernel Hacking Free Course - 3" edition

Oprofile — getting started (3)

Once we have collected data of our running application, we can use the opreport
command to generate a report:

/i opreport \\
CPU: CPU with timer interrupt, speed 0 Mhz
(estimated)
Profiling through timer interrupt _
TIMER: 0 all profile data are related to modules
and dynamic libraries
samples | 2 /
3122 98.5791| no-vmlinux
16 0.5052 libc.so.6
8 0.2526 bash
4 0.1263 1d-2.3.3.so0
4 0.1263 libgdk pixbuf-2.0.s50.0.400.9
3 0.0947 1libglib-2.0.s50.0.400.6
()
\ /

February 08, 2006

Profiling and debugging

Linux Kernel Hacking Free Course - 3" edition

Oprofile — getting started (4)

In this example we collected profile data related to the kernel image (we obtained a very

detailed report by using the '-I' option to opreport):

//CPU: CPU with timer interrupt, speed 0 MHz (estimated) \\
Profiling through timer interrupt
samples % image name app name symbol name
42301 99.0725| vmlinux I vmlinux acpi processor idle
59 0.1382 anon (tgid:5973 range:0x8209000-0x88a5000) Xorg (no symbols)
38 0.0890 1libc-2.3.4.so0 libc-2.3.4.s0 (no symbols)
32 0.0749 opreport opreport (no symbols)
18 0.0422 1libgt-mt.so.3.3.4 libgt-mt.so0.3.3.4 (no symbols)
13 0.0304 1libglib-2.0.s0.0.800.4 libglib-2.0.s0.0.800.4 (no symbols)
13 0.0304 1libpango-1.0.s0.0.1001.1 libpango-1.0.s0.0.1001.1 (no symbols)
11 0.0258 1libstdc++.s0.5.0.7 libstdc++.s0.5.0.7 (no symbols)
8 0.0187 gkrellm2 gkrellm2 (no symbols)
8 0.0187 1d-2.3.4.so0 1d-2.3.4.s0 (no symbols)
8 0.0187 1libcairo.so0.2.2.3 libcairo.so0.2.2.3 (no symbols)
7 0.0164 1libbfd-2.15.92.0.2.s0 libbfd-2.15.92.0.2.s0 (no symbols)
A\ ‘ /
(Hint: try to use opreport —-symbols --show-address)
February 08, 2006 Profiling and debugging 10

Linux Kernel Hacking Free Course - 3" edition

Oprofile - hint

You can use Oprofile even continuosly, dumping and resetting data every a certain amount
of time (like the command top does):

watch --interval=1 “opcontrol --dump && opreport —--symbols \
--show-address -1 /usr/src/linux-"uname -r”/vmlinux | \
head -n 20 ; opcontrol --reset”

February 08, 2006 Profiling and debugging 11

Linux Kernel Hacking Free Course - 3" edition

Linux kernel debugging - why?

There should be no reason to debug the kernel: it is the one part of the system we don't
have to worry about because it always works FALSE!

J

mm) because the kernel is crashing and we don't know why
=) because we are modifying the kernel according to a work or school project

=) because a driver is not working as well as it should, or is not working at all

m) because it is a good way to learn how the kernel works

February 08, 2006 Profiling and debugging

12

Linux Kernel Hacking Free Course - 3" edition

Debugging the kernel is an hard task

=) the kernel source is BIG (millions of lines)

=) the kernel is very complex (multithreaded, hardware-related, ...)

=) there's no higher program that monitors it: kernel code cannot be easily executed under a
debugger, nor can it be easily traced, because it is a set of functionalities not related to a

specific process
(“User Mode Linux” project addresses this problem)

February 08, 2006 Profiling and debugging

13

Linux Kernel Hacking Free Course - 3" edition

The easiest way: debugging by printing

The most common debugging technique is monitoring. Usually, in applications programming
this is done by calling print £ at suitable points. Now you are debugging kernel code and
you can accomplish the same goal with printk.

This function lets you classify messages according to their severity by associating different

loglevels, or priorities, with the messages. To specify the loglevel you can use a macro which
expands to a string.

Example:

4 N

printk (KERN DEBUG "value of cpu ptr: %i\n", cpu->nr);

printk (KERN CRIT "critical error! ptr value: %p\n", ptr);

A\ /

February 08, 2006 Profiling and debugging

14

Linux Kernel Hacking Free Course - 3" edition

printk loglevels (1)

There are eight possible loglevels associated to printk and defined in
<linux/kernel.h> header file.

KERN EMERG mmm) used for emergency messages, usually before a system crash

KERN ALERT mmm) used for serious problems, when it is needed quick response

KERN CRIT mm) critical condition, usually related to hardware or software failure
KERN ERR mmm) used for conditions, usually related to hardware difficulties
KERN WARNING m=mm) usedtowarn about problematic situations that are not serious

February 08, 2006 Profiling and debugging 15

Linux Kernel Hacking Free Course - 3" edition

printk loglevels (2)

KERN _NOTICE mmmp normalsituations that requires notification

KERN INFO mmm) informational messages. Many drivers print information about the hardware
they find at startup time at this level

KERN DEBUG =) used for kernel debugging phase only

@ ©ach string expanded by the macro represents a number ranging from 0 to 7, with smaller
values representing higher priorities

@ if you do not specify any value with printk, the default log level is equal to
DEFAULT MESSAGE LOGLEVEL variable

@ klogd and syslogd display only messages with priority less than or equal to the
DEFAULT CONSOLE LOGLEVEL variable

February 08, 2006 Profiling and debugging 16

Linux Kernel Hacking Free Course - 3" edition

How to change the default loglevel

@ throughthe sys syslog system call

@ kill klogd and then restart it with the —c option

N

From k1logd version 2.1.31 on it is possible to read and modify the console loglevel using
the text file /proc/sys/kernel/printk. The file hosts four integer values but we
are interested in the first two: the current console loglevel and the default level for messages:

after this command there will be displayed
echo 5 > /proc/sys/kernel/printk | only messages from loglevel 0 to 4

echo 8 > /proc/sys/kernel/printk after this command there will be displayed
all messages

February 08, 2006 Profiling and debugging 17

Linux Kernel Hacking Free Course - 3“ edition

How the logging process works (1)

1) the printk function writes messages into a circular buffer that is LOG_BUF_LEN (defined in
kernel/printk.c) bytes long

2) it then wakes any process that is waiting for messages, that is, any process that is sleeping in
the syslog system call or that is reading /proc/kmsg

3) if the circular buffer fills up, printk wraps around and starts adding new data to the beginning
of the buffer, overwriting the oldest data

4) if the klogd process is running, it retrieves kernel messages and dispatches them to syslogd,
which in turn checks /etc/syslog.conf to find out how to deal with them

February 08, 2006 Profiling and debugging 18

Linux Kernel Hacking Free Course - 3" edition

How the logging process works (2)

5) If klogd isn't running, data remains in the circular buffer until someone reads it or the buffer
overflows

Example of /etc/syslog.conf:

a («+.) N

#Kernel logging
kern.=debug;kern.=info;kern.=notice -/var/log/kernel/info
-/var/log/kernel/warnings

/var/log/kernel/errors

kern.=warn
kern.err

\ (...) y

(type “man syslog.conf” for further informations)

February 08, 2006 Profiling and debugging 19

Linux Kernel Hacking Free Course - 3" edition

When the kernel doesn't respond: the magic SysRQ key

It is a 'magical' key combo you can hit which kernel will respond to regardless of whatever
else it is doing, unless it is completely locked up.

To enable this feature you need to say "yes" to ‘Magic SysRq key (CONFIG MAGIC SYSRQ)
when configuring the kernel. This option is available starting from 2.1.x kernel version.

On Intel x86 architecture you can use the SysRQ by pressing the key combo:

ALT + SysRQ + <command key>

If you can't find any key labeled in such way, remember that the 'SysRQ' key is also
known as the 'Print Screen' key.

February 08, 2006 Profiling and debugging 20

Linux Kernel Hacking Free Course - 3" edition

The magic SysRQ key: command keys

“R” turns off keyboard raw mode and sets it to XLATE

K kills all programs on the current virtual console

“‘B” will immediately reboot the system without syncing or unmounting your disks

‘O will shut your system off via APM (if configured and supported)

S will attempt to sync all mounted filesystems
‘U will attempt to remount all mounted filesystems read-only
“P” will dump the current registers and flags to your console

February 08, 2006

Profiling and debugging

21

Linux Kernel Hacking Free Course - 3" edition

The magic SysRQ key: command keys

T’ will dump a list of current tasks and their information to your console
‘M will dump current memaory info to your console

sets the console log level, controlling which kernel messages will be printed to your
‘0"-"9" console. ('0', for example would make it so that only emergency messages like
PANICs or OOPSes would make it to your console)

“E” send a SIGTERM to all processes, except for init

“7 send a SIGKILL to all processes, except for init

‘v send a SIGKILL to all processes,including init (your system will be non-functional
after this)

February 08, 2006 Profiling and debugging 22

Linux Kernel Hacking Free Course - 3“ edition

When the system crashes: understanding the Oops output (1)

The “Oops” is a dump of kernel stack and CPU state at an instant and it is shown by the
kernel when a serious problem occurs.

This message can be sent to several destinations:

@ local console

/ through serial port
@ remote console

through tpc/ip with netcat utility or netconsole

@ kernel ring buffer (klogd pulls it out and sends it to syslogd)

February 08, 2006 Profiling and debugging 23

Linux Kernel Hacking Free Course - 3" edition

When system crashes: understanding the Oops output (2)

[:Unable to handle kernel NULL pointer dereference at virtual address 0000000c

EIP = c0168c7b

*pde = 00000000 _

Dop= HUEER [#1] Unable to handle kernel NULL pointer

Modules linked in: d€reference at virtual address 0000000c
CPU: 0

EIP: 0060: [<c0168c7b>] Not tainted VLI

EFLAGS: 00010246 (2.6.15khc06)
EIP is at seq_printf+0x7/0x43
eax: ca809f4c ebx: 00000000 ecx: 00000000 edx: ca809f4c
esi: 00000000 edi: ca809f4c ebp: ca809fdc esp: ca809f08
ds: 007bes: 007b ss: 0068
Process cat (pid: 5986, threadinfo=ca808000 task=cfa46a50)
Stack: 00000000 ca809f2c c010447h 00000000 c0393e60 00000000 (...)
Call Trace:

[<c0103273>] show_stack+0x7a/0x82

[<c0103381>] show_registers+0xee/0x157

[<c0103533>] die+0xdl/0x157

[<c01102eb>] do_page fault+0x385/0x4ae first clue: the kernel was unable to handle

L e a null pointer somewhere in the code

show_interrupts+0x21/0x156
[<c01687be>] seq_read+0xdd/0x24c
[<c014b9ee>] vfs read+0x88/0x128
[<c01l4bcbc>] sys read+0x3a/0x61
[<c0102d2d>] syscall call+0x7/0xb
Code: eb 1c 88 1la 42 ff 45 Oc 8b 45 Oc Of b6 18 84 db 74 05 3b 55 f0 72 91 2b

17 31 c0O 89 57 O0c 5b 5b 5e 5f 5d c3 55 89 e5 53 8b 5d 08 <8b> 4b 6c 8b 53 (...)

February 08, 2006 Profiling and debugging

24

Linux Kernel Hacking Free Course - 3" edition

When system crashes: understanding the Oops output (3)

Unable to handle kernel NULL pointer dereference at virtual address 0000000c

EIP = c0168c7b
*pde = 00000000
Oops: 0000 [#1]

PREEMPT EIP
Modules linked in: pcmcia firmware class pcmcia_core e

= c0168c7b

CPU: 0
EIP: 0060:[<c0168c7b>] Not tainted VLI
EFLAGS: 00010246 (2.6.15khc06)
EIP is at seq_printf+0x7/0x43
eax: ca809f4c ebx: 00000000 ecx: 00000000 edx: ca809f4c
esi: 00000000 edi: ca809fd4c ebp: ca809foc esp: ca809f08
ds: 007bes: 007b ss: 0068
Process cat (pid: 5986, threadinfo=ca808000 task=cfa46a50)
Stack: 00000000 ca809f2c c010447h 00000000 c0393e60 00000000 (...)
Call Trace:

[<c0103273>] show_stack+0x7a/0x82

[<c0103381>] show_registers+0xee/0x157

[<c0103533>] die+0xdl/0x157

[<c01102eb>] do_page_fault+0x385/0x4ae thanks to the EIP register we obtain two

[<c0102f57>] error_code+0x4f/0x54 ¥ ¥ y .
[<c010447b>] show_interrupts+0x21/0x156 Important mformat|0n3-

[<c01687be>] seq_read+0xdd/0x24c

[<c01ldb9ee>] vfs read+0x88/0x128 code segment and instruction address

[<c01l4bcbc>] sys read+0x3a/0x61
[<c0102d2d>] syscall call+0x7/0xb

Code: eb 1lc 88 1la 42 ff 45 Oc 8b 45 0c Of b6 18 84 db 74 05 3b 55 f0 72 91 2b
17 31 cO 89 57 0c 5b 5b 5e 5f 5d ¢3 55 89 e5 53 8b 5d 08 <8b> 4b 0c 8b 53 (...)

February 08, 2006 Profiling and debugging

25

Linux Kernel Hacking Free Course - 3" edition

When system crashes: understanding the Oops output (4)

Unable to handle kernel NULL pointer dereference at virtual address 0000000c

EIP = c0168c7b

*pde = 00000000

Oops: 0000 [#1]

PREEMPT . o . Oops: 0000 [#1]
Modules linked in: pcmcia firmware _class pcmcia_core e car)
CPU: 0

EIP: 0060:[<c0168c7b>] Not tainted VLI

EFLAGS: 00010246 (2.6.15khc06)
EIP is at seq_printf+0x7/0x43
eax: ca809f4c ebx: 00000000 ecx: 00000000 edx: ca809f4c
esi: 00000000 edi: ca809fd4c ebp: ca809foc esp: ca809f08
ds: 007bes: 007b ss: 0068
Process cat (pid: 5986, threadinfo=ca808000 task=cfa46a50)
Stack: 00000000 ca809f2c c010447h 00000000 c0393e60 00000000 (...)
Call Trace:

[<c0103273>] show_stack+0x7a/0x82

[<c0103381>] show_registers+0xee/0x157

[<c0103533>] die+0xdl/0x157

[<c01102eb>] do_page_fault+0x385/0x4ae Oops counter: there can be many Oops
[<c0102f57>] error_code+0x4f/0x54 " w3
[<c010447b>] show_interrupts+0x21/0x156 messages. Trust only the first one, it is
[<c01687be>] seq_read+0xdd/0x24c ¥

[<c014b9ee>] vfs_read+0x88/0x128 more reliable

[<c014bcbhc>] sys read+0x3a/0x61

[<c0102d2d>] syscall call+0x7/0xb
Code: eb 1c 88 1la 42 ff 45 0c 8b 45 0c Of b6 18 84 db 74 05 3b 55 f0 72 91 2b
17 31 c0 89 57 Oc 5b 5b 5e 5f 5d c3 55 89 e5 53 8b 5d 08 <8b> 4b 06c 8b 53 (...)

February 08, 2006 Profiling and debugging 26

Linux Kernel Hacking Free Course - 3" edition

When system crashes: understanding the Oops output (5)

Unable to handle kernel NULL pointer dereference at virtual address 0000000c
EIP = c0168c7b
*pde = 00000000

Oops:
PREE" CPU: 0 \
cu: EIP: 0060:[<c0168c7b>] Not tainted VLI

EIP: EFLAGS: 00010246 (2.6.15khc06)
E;:;A EIP is at seq printf+0x7/0x43
eax: eax: ca809f4c ebx: 00000000 ecx: 00000000 edx: ca809f4c

3:? esi: 00000000 edi: ca809f4c ebp: ca809f0c esp: ca809f08

Proc ds: 007b es: 007b ss: 0068
Stach\\\ ,///
Call Trace:

[<c0103273>] show_stack+0x7a/0x82

[<c0103381>] show_registers+0xee/0x157

[<c0103533>] die+0xd1l/0x157

[<c01102eb>] do_page fault+0x385/0x4ae

[<c0102f57>] error_code+0x4f/0x54 cpu_id, program status,
[<c010447b>] show_interrupts+0x21/0x156 .
[<c01687be>] seq_read+0xdd/0x24c general purpose registers,
[<c014b9ee>] vfs read+0x88/0x128 Y

[<c014bcbc>] sys_read+0x3a/0x61 control registers

[<c0102d2d>] syscall call+0x7/0xb
Code: eb 1c 88 1la 42 ff 45 Oc 8b 45 O0c O0f b6 18 84 db 74 05 3b 55 f0 72 91 2b
17 31 c0O0 89 57 Oc 5b 5b 5e 5f 5d ¢3 55 89 e5 53 8b 5d 08 <8b> 4b 0Oc 8b 53 (...)

February 08, 2006 Profiling and debugging 27

Linux Kernel Hacking Free Course - 3" edition

When system crashes: understanding the Oops output (6)

Unable to handle kernel NULL pointer dereference at virtual address 0000000c
EIP = c0168c7b
*pde = AAANAAAA

Oop

;55 Stack: 00000000 ca809f2c c010447b 00000000 c0393e60 00000000
(...)

CPU

ez Call Trace:
E;'I; [<c0103273>] show stack+0x7a/0x82

eax [<c0103381>] show registers+0xee/0x157
esi [<c0103533>] die+0xdl/0x157

ek [<c01102eb>] do page fault+0x385/0x4ae
/" Sta [<c0102f57>] error_code+0x4f/0x54

Cal [<c010447b>] show interrupts+0x21/0x156

[< [<c01687be>] seq read+0xdd/0x24c

[<cOxre g

[<c0102f57>] error_code+0x4f/0x54 \

[<c010447b>] show_interrupts+0x21/0x156

[<c01687be>] seq_read+0xdd/0x24c Process Stack and mturn
[<c014b9ee>] vfs read+0x88/0x128

[<c014bcbc>] sys read+0x3a/0x61 addresses

_ [<c0102d2d>] syscall call+0x7/0xb
Code: eb 1c 88 1la 42 ff 45 0c 8b 45 Oc O0f b6 18 84 db 74 05 3b 55 f0 72 91 2b
17 31 c6 89 57 Oc 5b 5b 5e 5f 5d ¢3 55 89 e5 53 8b 5d 08 <8b> 4b 0c 8b 53 (...)

February 08, 2006 Profiling and debugging 28

Linux Kernel Hacking Free Course - 3" edition

When system crashes: where is the bug? (1)

1) find out the function where the bug occurred by searching the EIP into the System.map of the
running kernel or using the same Oops message (if using 2.6 kernel, the last one is faster):

seq_printf+0x7

2) find out the last suitable function invoked before the crash (searching into the System.map or
the Oops message):
show_interrupts+0x21

3) launch the GNU debugger (gdb) on the linux kernel you are examining and disassemble the
function found at step 2:

gdb /usr/src/linux-"uname -r /vmlinux

(gdb) disassemble show interrupts

February 08, 2006 Profiling and debugging 29

Linux Kernel Hacking Free Course - 3" edition

When system crashes: where is the bug? (2)

4) Go to the offset found during step 2 (0x21 = 33) :

@)

(gdb) disassemble show interrupts

Dump of assembler code for function show interrupts:
0xc010445a <show_ interrupts+0>: push 3%ebp

0xc010445b <show interrupts+1>: mov 3%esp, 3ebp

0xc010445d <show_ interrupts+3>: push %edi

(o..)

0xc0104474 <show_ interrupts+26>: push $0x0

0xc0104476 <show interrupts+28>: call 0xc0168c74 <seq printf>
0xc010447c <show interrupts+34>: pop %edx

0xc010447d <show_ interrupts+35>: push $0x0

(on.)

\ /

February 08, 2006 Profiling and debugging 30

Linux Kernel Hacking Free Course - 3" edition

When system crashes: where is the bug? (3)

5) ok, now let's give a look to the disassembled code of seq printf ():

-

(gdb) disassemble seq printf

Dump of assembler code for function seq printf:
0xc0168c74 <seq printf+0>: push %ebp
0xc0168c75 <seq printf+1>: mov %esp, %ebp
0xc0168c77 <seq printf+3>: push %ebx
0xc0168c78 <seqg printf+4>: mov 0x8 (%ebp), $ebx
0xc0168c7b <seqg printf+7>: mov Oxc (%ebx), %$ecx
0xc0168c7e <seq printf+10>: mov 0x4 (%$ebx), %$edx
0xc0168c81 <seq printf+13>: cmp %edx, $ecx

(...)

N\

February 08, 2006 Profiling and debugging

31

Linux Kernel Hacking Free Course - 3" edition

When system crashes: where is the bug? (4)

5) that is what happened on the stack:

show interrupts()

(1) push $0x0
call 0xc01l68c74

©

seq printf()

push %ebp

mov %esp, sebp

push %ebx

mov 0x8(%ebp), %ebx

QROROION®

mov

February 08, 2006

OEEE

Oxc (%ebx),%ecx —»

3esp >

sesp > < sebp (B

zesp —»

¥esp ——»

3ebx @

Unable to handle kernel NULL pointer
dereference at virtual address 0000000c

Profiling and debugging 32

Linux Kernel Hacking Free Course - 3" edition

When system crashes: where is the bug? (5)

6) It is time to enter the show_interrupts() souce, as we understood the problem must rely on the
first parameter passed to seq_printf():

4)

int show_interrupts(struct seq file *p, void *v)

{

int i = *(loff t *) v, J;
struct irqgaction * action;

igned 1 flags;
unsigned long flags ok, we found the bug! ;-)

if (i == 0) {

for each online cpu(3])

February 08, 2006 Profiling and debugging 33

Linux Kernel Hacking Free Course - 3" edition

Useful debugging tools: netconsole and netcat

Netconsole (1)

Linux kernel 2.6 support a useful tool used to send console messages from the kernel you
are debugging to your host through a simple TCP/IP connection (UDP protocol).

To use Netconsole, simply do the followings:
1) compile the feature in your kernel as module or built in (better)

2) if netconsole is built-in, launch your kernel image at boot in this way:

netconsole=4444Q@10.0.0.1/eth0,5555@10.0.0.2/12:34:56:A1:B2:C3

else:

netconsole=4444@10.0.0.1/eth0,5555@10.0.0.2/12:34:56:A1:B2:C3

insmod netconsole (on the same line)

February 08, 2006 Profiling and debugging 34

Linux Kernel Hacking Free Course - 3" edition

Useful debugging tools: netconsole and netcat

Netconsole (2)

netconsole= 4444@10 0.0.1/etho, 5555@10.0.0.2/12:34:56:A1:B2:C3

source port

source ip address -
destination mac address

source network device destination port

destination ip address

February 08, 2006 Profiling and debugging

35

Linux Kernel Hacking Free Course - 3" edition

Useful debugging tools: netconsole and netcat

Netcat (1)

Netconsole cannot work properly if you are not listening to the port specified in the
“destination port” field.

In order to do that, we can use the netcat utility as follows:

nc -u -1 -p 5555
v

port number netcat

will try to open
the transport protocol will be UDP

tells netcat to enter the
listening mode

February 08, 2006 Profiling and debugging

36

